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A THEOlXETICAL AND EXPERIMENTAL STUDY OF THE NONLINEAR 

Th 

FLEXURAL VIBRATIONS OF T H I N  CIRCULAR RINGS 

By David A. Evensen 
Langley  Research  Center 

SUMMARY 

,e nonl inear   f lexural   v ibrat ions of t h i n   c i r c u l a r  rings are  analyzed by 
assuming  two v ibra t ion  modes and then  applying  Galerkin's  procedure on t h e  
equations of motion.  This  procedure  results  in  coupled  nonlinear  ordinary  dif- 
ferent ia l   equat ions  with  t ime as the  independent  variable. The applied  loading 
is  taken t o  be  harmonic i n  time,  and  approximate  solutions to   the   equat ions   a re  
obtained by the  method  of averaging. One such solution  involves  the  vibration 
of  a  single  bending mode; a subsequent s t a b i l i t y   a n a l y s i s  shows t h a t   t h i s  
single-mode  response is  valid  only  for  certain  combinations of amplitude  and 
frequency. For example, when the   d r iven  mode exceeds a c r i t i c a l  amplitude, non- 
l inear  coupling  causes i t s  companion mode t o  respond  and p a r t i c i p a t e   i n   t h e  
motion.  Approximate so lu t ions   a re   ob ta ined   for   th i s  coupled-mode case, and 
t h e i r   s t a b i l i t y  is  examined. The steady-state  response  curves  contain  an 
unusual  "gap," where both  the one- and two-mode solut ions  are   unstable .  These 
r e s u l t s  were  confirmed on an  analog  computer,  and  nonsteady  vibrations  were 
observed i n   t h e  gap  region. 

An experimental  study of t h e  problem was a l so  conducted.  Theory  and 
experiment  both  indicate a nonl inear i ty  of the  softening  type and the  appear- 
ance of t h e  companion mode. Measurements  of the  s teady-state   response  are   in  
good agreement  with the  calculated  values ,  and the  experimentally  determined 
mode shapes  agree  with  the form of the  assumed def lect ion.  

The ana ly t i ca l  and  experimental results exhib i t   severa l   fea tures   tha t   a re  
cha rac t e r i s t i c  of nonl inear   vibrat ions of axisymmetric  systems in   genera l  and 
of c i r cu la r   cy l ind r i ca l   she l l s   i n   pa r t i cu la r .  

INTRODUCTION 

Current  design of launch  vehicles   re l ies   heavi ly  on the  use of thin-walled 
cy l ind r i ca l   she l l s  as the  primary  structure.  During powered f l i gh t ,   t hese  
cy l indr ica l   s t ruc tures  are often  caused t o   v i b r a t e   t o   l a r g e  amplitudes, i n  
response t o  t h e i r  environment.  This  problem  has  given rise t o  a number of 
t heo re t i ca l   s tud ie s  of the  nonlinear  vibrations of t h in   cy l ind r i ca l   she l l s  



(refs. 1 t o  3 ) .  However, recent  experimental results (ref.  4 )  suggest   that  
such  vibrations are still not ful ly  understood. These studies  prompted t h e  
invest igat ion of a simpler  but  related problem, namely, the   nonl inear   f lexura l  
vibrat ions of a th in   c i r cu la r   r i ng .  

Flexural   v ibrat ions of c i rcu lar   r ings  were or ig ina l ly   ana lyzed   in  1871 by 
Hoppe (ref. 5 ) ,  who presented  the  l inear   vibrat ion  f requencies  and mode shapes. 
Shortly  thereafter,  Rayleigh (ref. 6) obtained similar results by using  the 
approximation  that  the  midsurface of t h e  ring was inextensional.   Since  that  
time, t h e   e f f e c t s  of midsurface  extension,  shear  deformation,  and  rotary  inertia 
have  been  investigated (refs. 7 t o  9 ) .  

The first s tudy  of   the  e las t ic ,   nonl inear   f lexural   v ibrat ions of r ings 
appears t o  be t h e  1959 work of Federhof er ( ref. lo), who analyzed  the free- 
vibrat ion problem. The same problem was examined by Shkenyev ( ref .  11) , who was 
primarily  concerned  with  the dynamic s t a b i l i t y  of rings, as were Goodier  and 
McIvor (ref. 12). N o  experiments on the  nonlinear  vibration of r ings have  been 
repor ted   in   the   l i t e ra ture ,   a l though  l inear   v ibra t ions  have  been studied  exper- 
imental ly   ( refs .  13 and 14 ) .  

The purpose of the   present  work is  t o  study  the  forced,  nonlinear flexural 
vibrat ions of t h in   c i r cu la r   r i ngs .  Only v ibra t ions   in   the   p lane  of the   r ing  
are  considered,  and  the  stress-strain l a w  (Hooke's Law) i s  assumed t o  be l i nea r .  
The nonl inear i t ies  examined here are geometric in   na ture  and a r i s e  from the  
nonlinear  terms of the  strain-displacement  relations.  The r ing is  assumed t o  
be of uniform  rectangular  cross  section and t o  be  re la t ively  thin.  With these 
res t r ic t ions ,  a de t a i l ed   t heo re t i ca l  and experimental  study of t he  problem was 
conducted. 

Agreement between  theory  and  experiment was generally  very good. The cal-  
culated  response  curves compare favorably  with  the  experimental   results,  and 
measurements of the   ac tua l   v ibra t ion  form  confirm the  choice of t he  mode shapes 
used in   t he   ana lys i s .  Both theory and  experiment exhibit  coupled  vibrations 
that  involve a driven mode and i ts  companion mode.  The results  demonstrate 
severa l   fea tures   tha t  are characterist ic  of  nonlinear  vibrations of axisym- 
metric  systems in   gene ra l  and of c i r cu la r   cy l ind r i ca l   she l l s   i n   pa r t i cu la r .  

This  research was conducted  while  the  author was a graduate  student a t  the  
Cal i forn ia   Ins t i tu te  of Technology; the  present  report  i s  a condensation of 
reference 15. 

SYMBOLS 

The uni ts   used  for   the  physical   quant i t ies   def ined  in   this   paper  are given 
both   in  U.S. Customary Units and in   t he   In t e rna t iona l  System of U n i t s  (S I )  
( r e f .  16). Appendix A presents   fac tors   re la t ing   these  two systems. 
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1 amplitude  and  time-varying  part  of  unif o m  contraction,  in. ( cm) 
(see  eqs. ( 8 )  and ( 9 ) )  

An(t),Bn(t)  generalized  coordinates  associated  with  cos x and  sin 3 R R 
modes,  in.  (cm)  (see  eqs. (8) and (10)) 

A ( d , B ( d  slowly  varying  amplitudes,  nondimensional 

AE(t),BE(t),CE(t)  experimental  amplitudes 

ring  length,  in. ( cm) 

Eh3 bending  stiffness,  in-lb b-N) 

displacement,  in.  (cm) (see fig. 14) 

Young’s modulus,  lb/in* ( N/m2) 

base  of  Napierian  logarithm 

load  per  unit  length  applied  to  ring  in  experiment,  lb/in.  (N/m) 

magnitude  of  assumed  loading,  lb/in.  (N/m) ( see  eq. (13) ) 

dimensionless  force 

ring  thickness,  in. (cm) 

integers 

Mathieu  equation  coefficients 

spring  constant  of  drive  wire,  lb/in.  (N/m) 

resultant  moments  per  unit  length,  in-lb/in.  (m-N/m) 

resultant  forces  per  unit  length,  lb/in.  (N/m) 

number of circumferential  waves  (n = 2, 3,  4, . . .) 

magnitude  of  load  experimentally  applied to ring, lb (N) 

radial load applied  to  cylinder 
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radial load applied t o   r i n g  

mean rad ius  of ring, in .  (cm) 

f r a c t i o n  of half  wavelength 

time, sec 

s tab i l i ty   var iab le   used   in   equa t ions  (D7) 

displacement of a point on middle  surface in   ax i a l ,   t angen t i a l ,  
and rad ia l   d i rec t ion ,   respec t ive ly  

coordinate  in  axial ,   circumferential ,  and radial d i rec t ion ,  
respectively 

Mathieu equation  variables 

pe rcen t   c r i t i ca l  damping i n  cos - ny and s i n  5 mode, R R 
respectively 

amplitude of shaker  displacement,  in. (cm) 

dimensionless  nonlinearity parameter, (97 
corrected  nonlinearity  parameter (see eq. (29)) 

EXXJEyy d i r e c t   s t r a i n s  

eXy, e X Z ,  eyz  shear  strains 

f C ( ~ ) , S S (  T )  nondimensional  generalized  coordinate  associated  with  cos - nY R 
and s i n  2 mode, respectively R 

A, A i  nondimensional s t a b i l i t y  variables 

V 

4 

Poisson 's   ra t io  



E,( -r),tS( r) perturbation i n  response  of cos - ny  ana s i n  - ny mode, respec- 
R 

t ively  (see  eqs .  ( D l )  and (D2) ) 
R 

P mass density,  lb-sec2/in4 ( k g / m 3 )  

Uxx, am, bzz normal s t resses ,   lb / in2 ( N/m2) 

OXY shear   s t ress ,   lb / in2 (N/m2) 

r nondimensional time, %t 

'A, % experimental  phases 

a( ~ ) , q (  7) slowly varying  phases,  nondimensional 

X = s 1 7 + '  

52 nondimensional  frequency, u/w 
co vibration  frequency,  radians/sec 

U C  l inear  frequency of cos %; driven mode ( see   f ig .  15) R 

UL nth  l inear  vibration  frequency, 

radians/sec 

approximate  vibration  frequency, 

radians/sec 

l inear  frequency of s i n  companion mode (see   f ig .  15) R' 

a2 a2 
ax2 ay2 

Laplacian  operator, - + - 

biharmonic  operator, $T? 

order E 2 
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Subscripts: 

c r   c r i t i c a l  

m a x  m a x i m u m  

A dot  over a quant i ty   ind ica tes   d i f fe ren t ia t ion   wi th   respec t   to  time; a 
bar  over a quantity  indicates  an  average  value.  

TKEORY 

In   th i s   repor t ,   the   nonl inear   v ibra t ions  of a t h i n  ring are analyzed by 
approximate  techniques. The governing  equations of motion are  presented first,  
along  with  the  associated boundary conditions. These equations  are  then  reduced 
t o  ordinary  different ia l   equat ions by applying  Galerkin’s  procedure. Two 
coupled  nonlinear  equations  result, and  approximate so lu t ions   t o  them a re  
obtained by the  method of averaging. The s t a b i l i t y  of these  solutions i s  exam- 
ined,  and improvements in   the   ana lys i s   a re   d i scussed .  

Equations of Motion 

m e  nonlinear  equations of motion of a th in   r i ng  can be  wri t ten  in   the form 
(see  appendix B)  

- =  b*Y b2v 
ay at2 

Ph - ( l a )  

where the  c i rcumferent ia l   force i s  given by 

Figure 1.- Ring  geometry  and  coordinate  system. 

and the  radial displacement w, t h e  tangen- 
t i a l  displacement v, and the  applied l o a d  
q a re   t aken   t o  be functions of only  the 
circumferential  coordinate y and the  time 
t . (See f i g .  1. ) These r e su l t s   a r e  
obtained by a special izat ion of the  analo- 
gous equations f o r  t h in   cy l ind r i ca l   she l l s .  

Boundary conditions.-  Since  the  ring 
i s  circular,   the  displacements must s a t i s f y  
the  following  continuity  requirements: 
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w(y,t) = w(y + 25rR,t) 7 
aiw 
hi hi 
"(Y,t) = -(Y aiw + (i = 1, 2) 1 (3a) 

in   add i t ion   t o   t he   equa t ions  of motion. From a physical  standpoint,  these 
boundary  conditions  insure  that  the  displacements,  slope,  and  other  related 
var iables  are continuous in   t he   c i r cumfe ren t i a l   d i r ec t ion .  

S i x l i f i e d   e q u a t i o n s  of motion.-  Previous work (ref.  15) has shown t h a t   f o r  
flexural  vibrations,  equations-(l)can  be  simplified  considerably  without  losing 
the   essent ia l   fea tures   o f   the  problem.  This  simplification i s  accomplished by 

"" -~ 

(1) assuming that   the   midsurface  c i rcumferent ia l   s t ra in  i s  zero 

(2)   neglect ing  the  effect  of t angen t i a l   i ne r t i a  

The f irst  of these  conditions  requires 

where the  nonlinear  strain-displacement  relations  (appendix B )  have  been  used. 
Similar ly ,   neglect ing  tangent ia l   iner t ia   in   equat ion ( la )  r e s u l t s   i n  

Combining equations  (2), (4), and ( 5 )  gives Ny = 0. U s i n g  t h i s   r e s u l t   i n  
equation  ( lb)  yields  the  simplified  equation of motion f o r  w: 

Note that   the   cont inui ty   condi t ions on w and v are  not  al tered by t h e  
preceding  discussion. 

With these  simplifications,  the  remaining problem i s  t o  solve  equation (6)  
subjec t   to   the   cont inui ty  and inextensionali ty  constraints.   Since  the l a t te r  
requirement  (eq. ( 4 ) )  i s  nonlinear and obviates  exact  solutions t o  equation ( 6 ) ,  
it i s  necessary t o   r e s o r t   t o  approximate  techniques. 
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Nonlinear  Ordinary  Differential  Equations 

for   Vibrat ion of a Thin Circular Ring 

Approximate so lu t ions   to   equa t ion  (6) can be obtained  by assuming t h e  shape 
of the   def lec t ion   in   space .  This approach i s  commonly used in   nonl inear   vibra-  
t i o n s  of s t ruc tures   (c f .  refs. 17 t o  19) and  reduces  the problem t o  one 
involving  nonl inear   ordinary  different ia l   equat ions  in  t .  

Choice  of def lect ion modes.- The most general  radial deflection  compatible 
with  the  continuity  requirements i s  

m 

w(y,t)  = k n ( t ) c o s  EZ R + Bn(t )s in  R 
n=O 

where A n ( t )  and B n ( t )  are per iodic   in  t i m e .  This case  has  been  analyzed i n  
detail in   re fe rence  15, but  the  majority of t h e  results can be obtained  by  using 
the  following two-mode approximation: 

w(y,t) = An(t)COS 3 R + & ( t ) s i n  9 R + Ao(t) ( 8 )  

Here cos - ny and s i n  - ny are the   l i nea r   v ib ra t ion  modes of the   r ing ;  and s ince 
R 

only  f lexural  motions are considered,  equation (8) i s  r e s t r i c t e d   t o   c a s e s  where 
n >= 2. The n = 0 mode i s  (by i t se l f )  an  axisymmetric  motion  involving 
stretching  of  the  midsurface, and t h e  n = 1 modes correspond t o  displacement 
of the  r ing as a r i g i d  body. The A, term i n  equation (8) i s  related t o  An 
and Bn by the  inextensional i ty   constraint .  

R 

Determination of A,( t ) i n  terms of An( t ) and Bn( t ) . - Solving equa- 
t ion   74)  f o r  av/* and subs t i t u t ing   fo r  w from equation ( 8 )  gives 

2 - ””- 
R 4R2 k n 2 ( t )  f %*(t 1 + Terms per iodic   in  y 

To sa t i s fy   the   cons t ra in t   v (y ,  t ) = v(y + 25rR, t ), t h e  terms t h a t  depend so le ly  
on time must be equated t o  zero.  This  procedure  yields 
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and  equation (8) can then be rewrit ten as 

f o r  t h e  assumed radial  displacement. This expression is  compatible  with  the 
continuity and inextensional i ty   constraints  and can be used with  Galerkin’s 
procedure t o   s a t i s f y  approximately  the  simplified  equation of motion for w. 

Aqplicatio-n - of .” the  Galerkin method.- To apply  Galerkin’s  procedure, equa- 
t i o n  (10) i s  subst i tuted f o r  w i n  equation (6) .  The result ing  expression is  
then  multiplied by a weighting  function  associated  with  An(t) and integrated 
with  respect t o  y from 0 t o  2nR. This  procedure  yields  an  ordinary  differ-  
ential   equation  involving  primarily An( t ). An equat ion  for  B n ( t  ) is obtained 
i n  a similar fashion;  both  equations  are  coupled in   the  nonl inear   terms.  The 
weighting  functions  used  are 

and 

respectively.  

Carrying  out  the  operations  just  indicated  and  then  nondimensionalizing 
the  results  yields  the  following  coupled  equations: 

where the  dimensionless  variables are 

9 



and 

(1) for simplicity,  the  loading  has  been  taken t o  be 

(2)  two minor nonlinear  terms  have  been  discarded 

( 3 )  modal damping terms have  been in se r t ed   t o   s tudy   t he   f i r s t -o rde r   e f f ec t s  
of small viscous damping 

Although these   r e su l t s  were derived  by a Galerkin  procedure,  they  can  also 
be  obtained by the  Rayleigh-Ritz method. In   general ,   these two approximate 
techniques  are  not  equivalent;  they  can  be made t o  coincide, however, by the  
proper  choice  of  weighting  functions  (ref. 20). It was fo r   t h i s   r ea son   t ha t  
the  weighting  functions &/a& and &/aB, were used t o  obtain  equations  (12). 

Approximate Solutions t o  Nonlinear  Equations 

The previous  section  indicated  the manner i n  which the  equations of motion 
a r e  reduced to  ordinary  nonlinear  differential   equations.  These equations s t i l l  
cannot  be  solved  exactly,  but  approximate  solutions t o  them can  be  obtained by 
the  "method of averaging." (For a discussion of t h l s  technique,  see  ref. 21, 
ch. V.)  

Vibrations  involving a s ingle  bending mode cos a are considered first, ( R) 
and nonlinear  single-mode  response  curves  are  presented. When t h e   s t a b i l i t y  of 
the single-mode solution i s  examined, the  vibrat ions  are  found t o  be s table  for 
only  certain  combinations of amplitude  and  frequency; t h i s  result makes it 
necessary t o  examine vibrat ions where both  cos - ny and s i n  - p a r t i c i p a t e   i n  

t he  motion. The method of  averaging i s  used t o   o b t a i n  approximate  solutions 
f o r   t h i s  two-mode case and a l s o   t o  examine t h e i r   s t a b i l i t y .  

nY 
R R 

Response  of a - s i x l e  bendi mode.- Inspection of equations (12) reveals 
that   possible  solutions-* and CC(7) # 0, where t h e   l a t t e r  
s a t i s f i e s  

10 



To obtain  approximate  solutions t o  equation (14) by  the method of  averaging, l e t  

c C ( T )  = A ( I - ) C O S ~ I -  + ~ ( - r y  (15) 

where A and O are presumed t o  be  slowly  varying  fbnctions of I-. When this 
expression  for sc i s  substi tuted  into  equation (14) and the  appropriate  aver- 
ages  are  carried  out,  two equations  result  ( see appendix C )  . 

Here x and $ are  average  values  (over one period) of A( I-) and @'(I-). 
Squaring  and  adding  equations (16) r e s u l t s   i n  one equation  involving A: 

For given  values of Gn, E, PC, and R, equation (17) can  be  used t o  compute 
A. Then equation  (16b)  can  be  solved  for O, and the  approximate  solution t o  
equations (12) becomes 

- - 

C C ( T )  C O s ( a I -  + 5) (184 

fo r   v ib ra t ions  where only one bending mode responds. A typical  reso- 

nance  curve i s  shown i n  figure 2, which demonstrates  the  nonlinearity of t he  
softening  type. 

The case  of f ree   v ibra t ions  may be obtained by put t ing Gn and PC equal 
t o  zero in  the  preceding  results.   Equations (16) then  yield 

Q = 1 - - + O(E2) EX2 
8 

which is  the  so-called "backbone  curve'' for   f ree   nonl inear   vibrat ions.   This  
curve i s  i l l u s t r a t e d   i n   f i g u r e  3 for  various  values of E .  

S t a b i l i t y  of t h e  one-mode response.- The s t a b i l i t y  of the   p receding   soh-  
t i o n  was investigated by perturbing cc(  I-) and c s (  I-). A study of t h e  
resulting Mathieu equations  indicates  that   within  order  €2 

11 
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F igu re  2.- Typical  single-mode  response.  Driven mode, cos r. nY 

E = 4.2 x 10-4, pc = 2 x 10-3; G, = 0.10. 
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F igu re  3.- Backbone  curves for various  values of E. 

Nonlinearity  parameter, E = (*)'. 

(1) perturbations of C c  are unstable  within  the  area bounded by 

3 z f  -2 
1--<52<1-- E A  

8 8 

(2)  perturbations of C s  are unstable  within  the  region 

( 3 )  both  types of per turba t ions   a re   a l so   uns tab le   in  narrow regions  near 

Details of the   s tab i l i ty   ca lcu la t ions  are given i n  appendix D, along  with 
an  interpretat ion of t h e  stabil i ty boundaries. The r e su l t s  of the s t a b i l i t y  
analysis  ( f o r  the   v ibra t ion  of a single m o d e )  are summarized i n  figure 4. In  
one region,  the  solution i s  unstable  with  respect t o   pe r tu rba t ions  of cc ,  and 
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jumps occur in   the   response .   In   an  
adjacent area, perturbations of ( a r e  
unstable,  and  the companion mode begins 
t o  v ibra te ;   th i s   case  of  coupled  vibra- 
t i ons  i s  analyzed in   the   fo l lowing  
section. 

Response- sf the-_self-coupled  bending 
modes.- When- tS(7) and C c ( 7 )  both 
osc i l l a t e ,   t he i r  coupled  vibrations  are 
governed by equations (12). A s  i n   t h e  
one-mode case,   the method of averaging i s  
employed t o   o b t a i n  approximate  solutions. 
To u s e   t h i s  method, l e t  

where A, B, a, and '# are presumed t o  
t o  be  slowly  varying  functions of T. 

Substi tuting  the  expressions f o r  
and 5 ,  from equations  (20)  into equa- 
t ions   (12)  and  applying  the method of 
averaging  gives 

Stable  response Stable  response 
in   t h i s   reg ion  in th is   reg ion  

-v .;I3 
I 1 1 -  1 

.98 1.00 1.02 1.04 

Frequency  ratio, 

F igu re  4.- Stability  diagram  for  single-mode  response. 

+ fiE2(1 - $ cos - 

(1 - Q2)fj - 2Slg cos + ~ 2 % ~  + 
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25- - dz) = 0 
2 dT 

where A( T), B( T), 0( T), and q(- r )  have  been  replaced  by  their  average 
values  over one cycle and are denoted by E, By 0, and v. The average 
phase difference i s  

” 

A = * - @  
” -  

For steady-state  vibrations,   the  average  values -A, By “0, and \I. are 
a l l  constant; i n   t h i s  case, t h e i r  time derivat ives  (dA/dT, dB/d-r, e tc .  ) are a l l  
zero,  and  equations ( U )  reduce t o  

” _  

(1 - R2)E - &(E2 4 - $cos 2) = 0 

Equations  (23) may be  solved  simultaneously for A, By @, and F, and t h e  
approximate  solution t o  equations  (12)  then becomes 

” _  

Details of the-calculations  are-given  in  appendix E. Response curves of t h e  
var ia t ion of A with Sl and B with Sl a re  shown i n   f i g u r e  5 ,  where t h e  
particular  values 

pc = ps = 2 x (Viscous damping) 

1 4  



and 
2 

E = (e) = 4.2 x (NoriLinearity  parameter) 

were used. 

A surpris ing feature of t h e  two-mode response was t h e  appearance of a 
"gap," or  discont inui ty   in   the  solut ion.  S1:Lghtly t o   t h e  l e f t  of t h e  resonance 
peak i n   f i g u r e  5 ,  t h e  approximate  solutions ]Tor C c  and 5 break down. The 
r e su l t s  of a subsequent stabil i ty analysis  sklowed t h a t   t h e  gap i n   t h e  response 
coincides  with a narrow region i n  which both  the one-mode solut ion (eqs. (18)) 
and the  two-mode solution  (eqs.   (24))  are  unstable.  The experiments  suggest 
t h a t  a "beating"  response  exists  in 
this area, with  the ring vibrat ing 
f i r s t  i n  one mode, t h e n   i n  two modes, 1:; 
then back t o  one, and so  fo r th .  

cussed i n  a subsequent  section)  veri- 
fied  the  calculated  response  curves, 'i 1 0 1  1, ~ = o , ~ ,  
and  nonsteady  vibrations were found t o  .% 
occur i n   t h e  gap  region.  Similar E 

responses  involving  gaps  have  been 
observed in   t he   ca se  of fuel   s loshing 
and in  other  nonlinear  problems.  (See 

Analog-computer s tudies  (dis- 

4 5  
~- Computed (eq. ( 2 3 ) )  
o Analog  resul ts 

refs. 22 and 23. ) - * . A b  - 
0 .96 .98 1.00 1.02 1.04 

Another  curious  result demon- 
s t r a t e d   i n   f i g u r e  5 is  t h a t   i n  some 

cases   the companion mode (sin F, which 

i s  not  driven by the  forcing  funct ion 

can   v ibra te   to   l a rger  amplitudes than 
the  dr iven mode cos - . Responses of 

this  detected  type  experimentally.   occur  for R < 1 and  were l a  n ._ - c ai 3 P l o -  J,k two-mode case  the  amplitude  of  the 
driven mode i s  considerably  reduced 
from what it would be i f  s i n  3 did 

not  vibrate.  A comparison of t h e  Frequency  ratio, 9 
driven-mode  response for  both  cases 
(one mode and two modes) i s  shown i n  
f igure  6. 

Frequency  ratio, 

(a) Companion mode, s in  z. 
) 15 - 

( :y) 

E 
4: 

It w i l l  a lso  be  noted  that   in   the 5- 

/ 

L L I I I .  L 
R O 1  .96 .98 1.00 1.02 1.04 

(b) Dr iven mode, cos?. 

Figure 5.- Typical  coupled-mode  response. E = 4.2 X 

pc = ps = z x 10-3; G, = 0.10. 



Final ly ,   both  f igures  5 and 6 show t h a t   t h e  two-mode response i s  almost 
l inear ,  at l e a s t   i n   t h o s e  areas where the   v ibra t ions  are s tab le .  

S t a b i l i t y  of  the- -co.upled-mode r'esponse.- A s  for   the  one-mode case,   the   s ta-  
b i l i t y  of t h e  coupled-mode v ib ra t ions  can be  found  by  perturbing  the  steady- 
state  response.  The resu l t ing   ana lJ rs i s  shows that  within  order €2 r e a l  non- 
zero  values  of do no t   ex i s t   fo r  

E A  
4 2  

52>1+- 

and the two-mode solution i s  unstabie  f o r  
a 

2 . 3 8 ~ ~  
a 

-2 
R C 1 -  

These r e su l t s   a r e   p re sen ted   i n  fi6,wre 7, and the  corresponding  s tabi l i ty   cal-  
culations are outlined  in  appendix F. 

A comparison of the  preceding  resul ts   wi th  the  resul ts   for   the  unstable  
regions  given  previously shows that the  one-mode and the  two-mode so lu t ions   a re  
both  unstable   in  a  narrow region.  given by 

3( 

2: 
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F igu re  7.- Stability  diagram  for  coupled-mode  response. 
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A s  noted  previously,   this 
response. The gap i n   t h e  
slowly  varying  amplitudes 

region  coincides  with  the  gap  in  the two-mode 
solut ion i s  apparently  caused when the  assumption of 
and phases  inherent  in  the  theory no longer  applies 

t o   t h e   a c t u a l  motions  of  the  ring. 

This  discussion  concludes  the one- a1.d two-mode ana lys i s   i n   t h i s   r epor t .  
The calculations can  be  extended t o  account f o r  t h e   e f f e c t  of t angen t i a l   i ne r t i a  
and additional  nonlinear  terms which have  been  previously  neglected. The gen- 
e r a l  case,  involving  an  infinite number of bending modes, has  also  been ana- 
lyzed.  (See  ref. l?.) These inves t iga t ions   ind ica te   tha t   the   bas ic   fea tures  
of the  vibrat ions  are   adequately  given by the  one-  and two-mode study  just   pre- 
sented. The r e s u l t s  of t h e  more ref ined  approaches  are   br ief ly   out l ined  in   the 
following  section;  details  of the   ca lcu la t ions  may be  found in   re fe rence  15. 

Improvements i n   t he   Ana lys i s  

Throughout the  present  study, many simplifying  approximations have  been 
used.  In  order t o  determine when these  approximations  are  valid and when they 
break down, it i s  necessary  to  consider some refinements i n   t he   ana lys i s .  These 
refinements  yield  significant improvements i n   t he   t heo ry  and bring it i n  c loser  
agreement  with  the  experiments. 

Disc-ussion  of  tang.e.nt.i-al  .inertia. ana pther   effects . -   Since  the  effect  of 
tangential   inertia  has  been  neglected,   equation (6) y ie lds  a slightly  inaccu- 
ra te   resu l t   fo r   the   l inear   v ibra t ion   f requency .   Inc luding   the   t angent ia l  
iner t ia   t e rm  (eq .   ( la ) )   cor rec ts   th i s   d i screpancy ,  and repeating  the  analysis 
g ives   r e su l t s   i n   t he  form of equations (16) and (lg), where R i s  replaced  by 

. . -. = "" " .1 . . 

- =  w - Frequency of v ibra t ion  
CDL Linear  vibration  frequency 

and E i s  replaced by 

In   o ther  words, t he  form  of t h e   r e s u l t s  i s  unchanged, but  the  parameters 52 and 
E a re   a l te red   to   account   for   the   t angent ia l   iner t ia .  

Other small corrections,  such as those due to  shear  deformation,  are gen- 
erally  unimportant i f  t he  ri& i s  suff ic ient ly   thin.   For   instance,  
( r e f .  8) has shown that  shear  deformation and r o t a r y   i n e r t i a  may be 

Euckens 
neglected i f  

n2h2 - << 1 
3R 



This result i s  i n  agreement  with  the.  analogous result f o r  beams - namely, t ha t  

shear  effects  can  be  neglected if the  (depth/length)2 ratj.0 i s  much less than 
unity.  

Similarly,  the  effect  of  extens:ion of the  midsurface of the   r ing  i s  usually 
unimportant f o r  bending  vibrations 01: t h i n  rings. This result i s  well   estab- 
l i shed   for   l inear   v ibra t ions  (see ref's. 6, 8, and 12)  and car r ies   over   in   the  
nonlinear  case as w e l l  (see ref. 15 i n   t h i s   r e g a r d ) .  

of l inear   vibrat ions:  A major improvement in   the   nonl inear   ana lys i s  can be 
obtained when additional  nonlinear  terms are included  in  the  strain-displacement 
re la t ions .  Up t o   t h i s   po in t ,   t he   ca l cu la t ions  have a l l  employed the  usual  non- 
l inear  expression for t h e  midplane  ciircumferential  strain, namely, 

which is  commonly used in   nonl inear  shell studies  (e.g. ,   refs.  1 t o  4 ) .  How- 
ever,  equation  (26a) i s  an  approximation t o   t h e  more complete  strain-displacement 
r e l a t ion   ( r e f .  24) 

When the  def lect ion  w(y, t )  i s  assumed i n   t h e  form (eq. (8))  

A o ( t )  = - " 2 k n 2 ( t )  4R + B n 2 ( t i  

Then the   def lec t ion  i s  (eq. (10))  

and the  coeff ic ient  n2/4R eventually becomes the  nonlinearity  parameter 

E = (+f . Thus, the  coeff ic ient  of [n:(t) + Bn2( t ) l  in   the  preceding 

expression  for w influences a l l  the  previous  results  (e.g.,  the  response 
curves,  the backbone curve,  and s tab i l i ty   boundar ies )  by means Of E .  

18 



I n  a similar fashion, when t h e  more exact  equation (2611) i s  used i n   t h e  
inextensionality  condition, a more accurate  expression  for A,( t )  results 
(see ref. 13) 

A o ( t )  = - "'(I- - L)2k(t) + Bn (t) + Terms of  order 4R n2 'I 
If the  higher  order terms are  neglected,   the improved version of the  def lect ion 
then becomes 

Since th i s   express ion   for  w has exactly t he  same form as- t h e  one which was 
previously  used  (eq. (10) ), the   ana ly t ica l   resu l t s  are a l t e r ed  o - d y  ~ -~ through the 

"" . . .  " . 

new coeff ic ient  of bn2(t) -k Bn2(t  ,] . That is, the   r e su l t s  of the  previous 
calculations can  be  modified t o  

replacing E = cy - by 

account  for  the  additional  nonlinearit ies by 

This  correction  can  be combined with  the one which accounts  for  tangential- 
i n e r t i a   e f f e c t s  by first defining a corrected  nonlinearity  parameter 

Then a l l  the  previous  analytical   results  (response  curves,   etc.)  may be cor- 
rec ted   for   bo th   the   addi t iona l   nonl inear i t ies  and t angen t i a l   i ne r t i a  by 
replacing Sl by u/u)r, and E by the  expression  for   (eq.   (29)) .  The 
corrections  are most noticeable  for low values  of  n,  with  the  effect of t he  
additional  nonlinearit ies  predominating. For example, when n = 2, E C  i s  
about  one-fourth as la rge  as E (i.e., the   nonl inear i ty  i s  reduced by ilearly 
a factor   of  4 ) .  Values of E ~ / E  for  various  values  of n are given i n   t h e  
following  table : 

. "_ 
Mode number, n 

. .. 

2 0.261 
3 
4 
5 .820 

10 930 
. .  . .  



The bulk of the  experimental   results were obtained  for   the  n  = 4 mode, and 
t h e  comparison of theory and  experiment was made by  using = 0.734~. The 
experimental work i s  discussed  in  the  following  section. 

Apparatus 

A thin  seamless  copper  ring was used i n  the  experiments; it had a radius 
of 4 inches (10.16 cm), a  thickness of 5.1 X 10-3 inch  (0.013 cm), and a 
length   in   the   ax ia l   d i rec t ion  of 0.988 inch (2.51 cm) . The r ing was supported 
by  four  very  thin  suspension  threads,  equally  spaced  around  the  circumference, 
a s  shown i n  f igure  8. 

Radial  motions  of  the  ring were measured  by two inductance  pickups which 
operated  in  a push-pull  fashion. These deflection  sensors were mounted on a 
f ixture   with a large  bearing  that   al lowed them t o  move circumferentially  around 
the  r ing.   Vibrations of t he  ring were excited by means of an  electrodynamic 
shaker. The shaker was connected t o   t h e   r i n g  by a fine  tungsten  drive  wire 
(0.001-inch (O.OO3-cm) diameter), which served as a  very  soft  coupling  spring 
between the  shaker  and  the ring. (A simplified  sketch of the  apparatus i s  shown 
i n   f i g .  8.) This  arrangement made it possible  to  estimate  the  amplitude of the  
force which was experimentally  applied to   v ib ra t e   t he   r i ng .  

Suspension 
threads (4) "- 

Inductance 
pickups (2) -b ,-Ring 

I ,,,,,, I , , ,  1 , 1 1 1  , , l I , L  

,,- Drive  wire 

Oscil lator 

Carr ier  
amplif ier Ampl i f ier  

Shaker 

/ \,, 
I 1  ,/,,,,,n,,,,n<, 

I 

Dif ferent ia l  
amplif ier 

Band-pass 
f i l t e r  

Figure 8.- Simplif ied  schematic of experimental  apparatus. 

The response  of t he  
r ing was analyzed,  and  the 
vibrat ion modes were iden- 
t i f i e d  by means of Lissajous 
f igures .  These  and other  
technica l   de ta i l s  of the  
experiments  are  discussed 
i n  appendix G. 

Measurement of Mode Shapes 

The  mode shapes  were 
measured by exci t ing one 
mode (cos R, ny n = 4 and 
recording  the  amplitude of 
the  response a t   i n t e r v a l s  
along  a  half  wavelength. 
Measurements  were made sep- 
a ra t e ly  on  two d i f f e ren t  
half  waves; the  amplitudes 
ranged from about 1 t o  27 
times  the  thickness of the 
r ing.  These  amplitude 
measurements a re  shown i n  

) 
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f igure  9, where the   so l id   l i nes  
correspond t o   t h e   d e f l e c t i o n  shape 
assumed in   t he   ana lys i s .  A s  indi-  
ca t ed   i n   f i gu re  9, t he  main vibra- 
t i o n  shape was v i r t u a l l y  independ- 
ent  of amplitude.  Additional 
resul ts   presented  in   reference 15 
include a p lo t  of t h e  root-mean- 
square  response  around  the circum- 
ference of t he   r i ng  and measurement 
of t he  motions which occurred at 
t h e  nodes of cos f o r   t h e  

single-mode  response. 

Response  Curves f o r   t h e  

n = 4 Mode 

Some typical  experimental 
r e s u l t s   a r e  shown i n  nondimensional 
form i n   f i g u r e  10 fo r   fou r   d i f f e r -  
ent  values of the  input   force.  The 
magnitude of the  input   force was 
held  constant   for   the  individual  
response  curves by maintaining a 
fixed  displacement of the  shaker 
(26,, peak-to-peak)  during  each 

__ Assumed shape, s i n  x r  
0 Experimental data 

A'Amax 

Amax = 1.36h 
1 1 

0 .2 .4 .6 .8 1.0 

Fraction of half  wavelength, r 

F igu re  9.- Comparison of assumed  mode  shape  and  experimental  results 
for  various  ampli tudes. 

run. An electronic  counter was used t o  measure the  period of the  forcing  func- 
t i o n   a t  each  data  point;   by  this  procedure it was possible  to  determine  the  fre- 
quency r a t i o  u/q, very  accurately.  The amplitude  of A n ( t )  was measured a t  

one antinode of  cos -, and the  phase of the  response QA was determined  there 

with  a  standard  phase  meter;  the  magnitude of B n ( t )  was measured a t  an adjacent 

node of cos 9. To f a c i l i t a t e  comparison with the  analysis,   these  experimental  

amplitudes were nondimensionalized on the  r ing  thickness.  

nY 
R 

R 

Corresponding t h e o r e t i c a l   r e s u l t s   a r e  shown by t h e   s o l i d   l i n e s   i n   f i g -  
ure  10. The backbone curves were calculated by using  equation (19)  with "/% 
i n   p l ace  of R and subs t i t u t ed   fo r  E; both  changes were made t o  account 
for   the   in f luence  of t a n g e n t i a l   i n e r t i a  and the   addi t iona l   nonl inear i t ies   d i s -  
cussed  previously. The  same corrections were used  in  computing the  forced 
response, which was obtained  from  equations (16) f o r   t h e  undamped case. The 
input   force  used  for   these  calculat ions was computed  from the  shaker  displace- 
ment and the  spring  constant of the  dr ive  wire .  A de ta i led  comparison  of t he  
calculated and  measured response  for   the  dr iven mode i s  g iven   in   f igure  11, 
which i s  f o r  a peak-to-peak  shaker  displacement  of 26, = 0.3 inch (0.76 cm). 
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Figure 10.- Response  curves  for n = 4 mode. 
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(c) Shaker  displacement: 
2b0 = 0.300 in. (0.762 cm). 

(d) Shaker  displacement: 
26, = 0.400 in. (1.016 cm). 

F igure 10.- Concluded. 



Discussion  of  the  Experimental Results 

A s  shown i n  figure 9, the  experimentally  determined mode shapes  were 
near ly   perfect   s ine waves along  any  half  wavelength.  This  result was found t o  
be  independent  of t he  m a x i m u m  amplitude  of  the motion, as figure 9 indicates .  
For the single-mode  response,  the  displacements a t   t h e  nodes  of  cos 9 were 

found to   increase  l inear ly   with  the  square of the  m a x i m u m  amplitude.  (See 
r e f .  15.) 'This  behavior i s  i n  agreement  with  the  analytical   results.  

R 

- 
.9a 1. 

W - 

+/ 
0 

1 

W L 

Figure 11.- Calculated  and  measured  response. n = 4 mode; 
26, = 0.300 in. (0.762 cm); cC = 3.08 X 

The response  curves of f igure  10 
show good correlat ion  with the theo- 
r e t i c a l  backbone  curves,  and f igure  11 
shows a frequency  difference of l e s s  
than 1 percent between theory and 
experiment.  This  slight  discrepancy 
was probably due t o  small e r ro r s  i n  
es t imat ing   the   force   appl ied   to   the  
r ing .  

The experimental  response  curves 
exhibi ted  the jump  phenomena and the  
appearance of a  secondary  resonance 
peak fo r   t he   d r iven  mode. The latter 
peak resu l ted  from t h e   f a c t   t h a t ,   i n  
t he  experiment, the  dr iven mode and 
t h e  companion m o d e  had s l i g h t l y   d i f -  
ferent   natural   f requencies .  Because 
of t h i s   d i s p a r i t y ,  it was not  possible 
t o  make a quant i ta t ive  comparison of 
t h e  coupled-mode response  with  the 
corresponding  theory. However, quali- 
t a t i v e  agreement  with the   ana lys i s  was 
obta ined   for   the  two-mode case and 
inc luded   t he   r e su l t   t ha t   i n  some 
instances  the companion mode vibrated 
to  larger  amplitudes  than  the  driven 

mode. One major fea ture  of the  theory which was not  detectea  experimentally was 
the  so-called "gap" i n  the  response;  the  disappearance of the  gap was apparently 
due to   t he   d i f f e rence   i n   t he   na tu ra l   f r equenc ie s  of t he  coupled modes. The only 
r e s u l t s  which m i g h t  have  been r e l a t e d   t o   t h e  gap  were  occasional  nonsteady 
beating  responses. These  were  sometimes o b s e r v e d t o   t h e   l e f t  of the  coqanion-  
mode resonance  peak. 

In   order   to   understand more ful ly   the  response  of   the ring i n  the  gap 
region and t o   v e r i f y   t h a t  such a gap d id   theore t ica l ly   ex is t ,   equa t ions  (12) 
were solved on an  analog computer. The analog  solutions  confirmed  the  previous 
ana ly t i ca l  results, as shown i n  figures 2 and 5 .  Nonsteady vibrations  with 
beats   occurred  in   the gap  region. The analog  procedure i s  out l ined   in  
appendix H. 
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CONCLUDING REMARKS 

The nonl inear   f lexural   v ibrat ions of t h i n  rings were analyzed  by  choosing 
vibrat ion modes and applying  Galerkin's  procedure. The vibrat ions were assumed 
t o  involve no s t re tching of the  midsurface  of  the ring; t h i s  assumption was 
found t o  be  adequate for   the   s tudy  of f lexura l   v ibra t ions .   In   the   ana lys i s ,  
only one mode was directly driven by the  forcing  function;  nevertheless, it was 
necessary t o  include two vibrat ion modes in  the  calculations  because  under cer- 
tain  conditions,  nonlinear  coupling  caused  the companion mode t o  respond  and 
p a r t i c i p a t e   i n   t h e  motion. In   other   cases ,   the  single-mode  response was 
suf f ic ien t  . 

Significant improvement in   t he   t heo ry  was obtained by including  the  effect  
of additional  nonlinearit ies  in  the  strain-displacement  relations.   Retaining 
t h e   e f f e c t  of t angen t i a l   i ne r t i a   a l so  improved the   ca l cu la t ions ,   bu t   t o  a lesser 
extent .  Both these  modifications  lose  their   importance as t h e  mode number 
increases; however, they combined t o  decrease  the  nonlinearity parameter by more 
than 2'3 percent   for   the   th i rd   f lexura l  mode (n = 4) . 

The experimental   results were found t o  be i n  good agreement  with the  anal-  
ysis ,   both  qual i ta t ively and quant i ta t ively.  Theory  and  experiment  both  exhib- 
i t e d   t h e  jump phenomenon, nonlinearity  of  the  softening  type,  an& the  appearance 
of t h e  companion mode.  The measured responses were i n  good agreement with  the 
calculated  values, and the  experimental mode shapes  demonstrated  the  appropriate- 
ness  of  the  deflection form employed in   t he   ana lys i s .  

The r e s u l t s  of the   p resent   s tudy   a re   charac te r i s t ic  of the  nonlinear  forced 
vibrat ions of  axisymmetric e las t ic   bodies .   In  such structures,   the  nonlinear 
forced  vibration of one mode of ten  resul ts   in   the  response of both  the  driven 
mode and i ts  companion. Vibrations of t h i s  type  occur  because of the  nonl inear  
coupling  that exists between the  modes involved. The nonlinear  forced  vibra- 
t i o n  of thin  c i rcular   cyl inders ,   th in   c i rcular  cones,  and o ther   th in  axisym- 
metric  structures  can  be  expected  to  exhibit  similar behavior. 

Langley  Research  Center, 
National  Aeronautics  and Space Administration, 

Langley  Station, Hampton, Va., August 4, 1965. 



APPENDIX A 

CONVERSION OF U. S. CUSTOMAHY UNITS TO SI  UNITS 

The Internat ional  System of  Units  (SI) was adopted  by  the  Eleventh  General 
Conference  on Weights and Measures, Paris,  October 1960, i n  Resolution No. 12 
(ref. 16). Conversion f a c t o r s   f o r   t h e  units used  herein are given i n   t h e   f o l -  
lowing table:  

Physical  quantity 

I -4 
Force . . . . . . . . . .  
Frequency . . . . . . . .  
Length . . . . . . . . . .  
Load . . . . . . . . . . .  
Mass density . . . . . . .  
Moment per   uni t   length . . 
St i f fness  . . . . . . . .  
Young's modulus . . . . .  

" 

U.S. 
Customary 

Unit 

l b  
CPS 
in.  
lb/in2 
lb-sec2/in4 
in-lb/in. 
lb/ in .  
lb/in* 

~ ~~ . . .  

. .  

Conversion 
f ac to r  

("1 
4.45 
1 
0.0254 

6895 
27 679.9 
4.45 
175 2 
6895 

S I  u n i t  

newtons ( N )  
her tz  (Hz) 
meter ( m )  
newton/meter2 (N/m2) 
kilogram/meter3 (kg/&) 
meter-newton/meter (m-N/m) 
newton/meter (N/m) 
newton/meter2 ( N/m2) 

. . ~ .. . . . . .  . .  

* Multiply  value  given  in U.S. Customary Unit  by  conversion  factor t o   o b t a i n  
equivalent  value  in S I  u n i t .  

Pref ix   to   ind ica te   mul t ip le  of un i t s  is as follows: 
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APPEXDIX B 

THE EQUATIONS OF MOTION 

The equations  of  motion f o r  a t h i n   c i r c u l a r  ring become nonlinear when 
f i n i t e  displacements are considered. The purpose  of th is  appendix is  t o  pre- 
sent a b r i e f  development of these  equations. 

Useful Results From Shell Theory 

The equations  for  r ings  can  be  obtained  in a straightforward manner by a 
special izat ion of the  analogous  equat ions  for   thin  cyl inders .  The la t ter  equa- 
t i o n s  have  long  been employed in   nonl inear   analyses  of th in   cy l indr ica l   she l l s ;  
they  are  often  derived  (e.g. ,   refs.  1 and 2) and a re  simply  repeated  here: 

2 
- 5 + q(x,y,t)  = ph - a w  

R at2 

The variables  u, v, and w are t h e  midplane  displacements i n   t he   ax ia l ,   c i r -  
cumferential, and radial   d i rect ions,   respect ively.   (See  f ig .  1.) Forces and 
moments per   uni t   length (Nx, Ny, %, e tc . ) ,   def ined   in  terms of the   s t resses ,  
are 

The appl ied  load  q(x,y, t )   acts   in   the  radial   d i rect ion.  

Equations ( B l )  t o  (B3)  contain  both  forces and moments as well as dis-  
placements.  Before  specializing  these  equations t o  apply t o  rings, it i s  
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d e s i r a b l e   t o  express them i n  a more workable form. To achieve  the  desired form, 
the  following  procedure i s  used: 

(1) The s t r a i n s  are related  to   the  displacements  u, v, a n d .  w 

(2)  Hooke's law is  used t o  relate the  stresses t o   t h e   s t r a i n s  

( 3 )  By combining the   r e l a t ions  from (1) and (2), t he  stresses are wr i t ten  
i n  terms of the  displacements  and  then employed i n  equations (Bl) t o  (a). 

The strain-displacement  relations are approximated by 
- 

Transverse  shear  deformation is neglected,  and  the  transverse normal stress is  
assumed t o  be negligible.  These  assumptions may be wr i t ten  as 

EXZ = 0 Eyz = 0 uzz = 0 

These re la t ions  are commonly employed in   nonl inear   analyses  of thin  cyl inders .  

Terms l i k e  l(*r give rise to   nonl inear i t ies   in   the   equat ions  of motion. 
2 a y  

Next, Hooke's law i s  used t o   r e l a t e   t h e   s t r e s s e s   t o   t h e   s t r a i n s  and  with 
the  preceding  assumptions  yields 

E oxy = 
2(1 -I- v) 'w 

where E i s  Young's modulus and v i s  Poisson 's   ra t io .  Fknploying these 
s t r e s ses  and equations ( B 5 )  i n  equations (B4) and carrying  out  the  integration 
through  the  thickness  gives  the  following  forces and moments in  terms of the  
displacements : 
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Mx = -D($ + v 5) 
a W  
2 

Mw = - D ( 1  - v)- 
ax ay 

where the  bending  st iffness D = Eh3 
12(1 - v')' 

Derivation of R i n g  Equations 

To special ize   the  cyl inder   equat ions  to  a ring,  the  following  assumptions 
a re  made: 

(1) The displacements w and  v, as well  as the  radial   load q, are  
t a k e n   t o  be  functions of only  the  circumferential  coordinate y and time t .  

(2)  The thickness and the  width of the  r ing  are  both  taken  to  be  constant.  

The ring is  assumed t o  be  thin, so tha t  (:r i s  negl igible   in  comparison 
with  unity.  

( 3 )  The forces  Nx and Nxy a r e  assumed t o  be  zero  throughout  the  ring. 
The boundary  conditions  require that Nx and Nxy vanish a t  the ends of the  
r ing  (at x = 0, x = b ( f i g .  1)); for   f lexural   v ibrat ions,   rapid changes i n  
the  x-direction  are  not  anticipated,  and it becomes reasonable t o  assume tha t  
N, = 0 and Nw = 0 throughout  the  ring. 
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men  these  assumptions are used,  equations ( B 6 )  reduce t o  

N, = 0 I 
Nxy = 0 

Mxy = O 

Substituting  equations (B7) in  equations (Bl) t o  (B3) yields  the  following 
ring  equations : 

where 

O = p h -  a2U at2 

Equation (B8) i s  unimportant f o r   t h e  problems dealt   with  herein and w i l l  hence- 
for th   be dropped. 

Note tha t   there  i s  a s imi la r i ty  between equations (B9) and (B10) and the 
following  analogous  equations f o r  a vibrating beam: 
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where 

S 

T 

E 1  

X 

9 

W J  v 

The term 
curved. 

cross-sectional  area 

longi tudinal   tension i n  beam 

bending s t i f f n e s s  

longitudinal  coordinate 

transverse  load 

l a t e r a l  and longitudinal  displacements,  respectively 

Ny/R occurs   for   the  r ing  but   not   for   the beam because  the  ring i s  

It should  be  noted a t  this   point   that   the   r ing  equat ions  (eqs .  ( B 9 )  and 
(B10) ) contain  the same shortcomings  inherent in  the  cylinder  equations 
(eqs. (Bl) t o  ( B 6 ) ) .  For example, both  sets  of equations make the  assumption 
that   1 /n2 i s  negl igible   in  comparison with uni ty  (where n i s  the  circum- 
f e r e n t i a l  mode number). A s  a result ,   these  equations  lose  their   accuracy  for 
low values of n (e.g., n < 6). In   the  case of cylinders, Morley ( r e f .  25)  
removed t h i s   d i f f i c u l t y  by  modifying the  bending  terms. This modification w a s  

accomplished  by  replacing d w  by D(.‘ + -&rw in   the   f ina l   equa t ions ;   the  

analogous  modification of equations (B9)  and (B10) resul ts   in   the  fol lowing  set  
of improved equations of motion f o r  a ring  (eqs.  ( l a )  and ( l b ) ) :  

2 
D ( 5  + L)(k + x) + $  - - N y s  $ ( ”) + ph - h2W = q(y , t )  
h2 R2 h2 R2 a t  2 

where 

Except f o r   t h e  bending terms, equations (B9) and (B10) and ( la )  and ( l b )  
are ident ica l .  Because  of t h i s   d i f f e rence ,  however, on ly   t he   l a t t e r   s e t   y i e lds  
the   cor rec t   l inear  ring vibration  frequencies,  and  for  this  reason  they  are 
employed in   the   p resent   ana lys i s .  
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APPLICATION OF THE " H O D  OF AVEMGING 

The method of averaging  (sometimes  called  "the method of slowly  varying 
amplitude  and  phase") i s  of ten employed in   nonl inear   v ibra t ion  problems.  This 
technique i s  demonstrated  here by applying it t o  equation (14) which i s  repeated 
here  for  convenience: 

= A COS X 

where A and CP a re  assumed t o  be  slowly  varying  functions of T, and X des- 
ignates  [QT + @(I-)] . Taking the  der ivat ive of cc(-r)  gives 

I n   t h e  method of averaging,  the  result   in  equation (Cl) is  replaced by two 
equations; namely, 

- -As2 s i n  X 
d7 
d f c  = 

and 

dA do - cos X - - A  s i n  X = 0 
dT d T  

The second der ivat ive d2Cc/d-r2 i s  then, computed from equation  (C2), 

dZ( c =  cos X - - R s i n  X - A - R cos X 
dT2  d-r  dT 

dA d@ 

Next, the  preceding  approximations  for f,,  dCc/d-r, and d2CC/dT2 are sub- 
s t i t u t e d  i n t o  equation (14) .  The r e su l t  i s  
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Both s ides  of  equation (C5) are  then  multiplied by cos X, and the   r e su l t  i s  
added t o  equation (C3) after t h e  la t ter  has  been  multiplied by S2 s i n  X. This 
procedure  yields 

(1 - n2)A cos2X - Afl E - 2P$A s i n  X cos X + f A cos% - sin2X) 
d T  2 

-nA(M s i n  X COS X + A e COS%] = Gn(coS% COS @ + s i n  X COS X s i n  Q) ( ~ 6 )  
dT dr 

J O  J O  

where dT/dT i s  the  average  value of d@/dT. When equation ( ~ 6 )  i s  averaged 
i n   t h i s  fashion, it becomes 

- 
d@  ERA d@ -3 - 

(1 - n2)z - 2nz - - - - - - = Gn cos Q 
- 

dT 4 8 d-r 

In  a similar fashion, a second  equation f o r  and 5 i s  obtained by 

(1) Multiplying  both sides of  equation (C5) by s i n  X 

(2)  Adding t h i s   r e s u l t   t o   e q u a t i o n  (C3) a f t e r   m u l t i p l y i n g   t h e   l a t t e r  by 
-n cos x 

(3) Averaging the   f ina l   equa t ion  by integrating  both  sides from X = 0 
t o  2x0 
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These manipulations  give 

- 
dA - ,G2 c - -2Q - - 2$,QA - - - = Gn s i n  0 
dT 8 

Equations (C7) and ( ~ 8 )  are f i r s t -o rde r  coupled different ia l   equat ions f o r  x and 5. They may be   s impl i f i ed   t o  coupled  algebraic  equations when steady- 
s ta te   v ibra t ions  are considered. For example, steady-state  vibrations imply 
that  the  average  values A and 5 remain  steady ( iLe., constant)  with time. 
I n   t h i s  case, the  average  derivatives dcl/dT and d@/dT are  identically  zero,  
and equations ( C 7 )  and ( ~ 8 )  can  be  reduced t o  

These algebraic  equations  can now be  solved  simultaneously t o   g i v e  71 and 5 
as functions of Gn, E, PC, and il. Such a re su l t  i s  ind ica t ed   i n  
equation (17). 
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STABILITY OF TRE ONE-MODE RESPONSE 

To inves t iga t e   t he   s t ab i l i t y  of t he  one-mode response  (eqs. (18)), both 
C c (  T )  and C s (  T)  are dis turbed  s l ight ly .  The disturbed  variables can  be 
expressed as 

C c ( T )  = x COS(QT 5)  e c ( T )  (Dl) 

where k c ( 7 )  and E S ( 7 )  represent small perturbations  in  the  response of 

COS - and s i n  -, respectively.  The solution  (eqs. (18)) i s  said t o  be 

s t ab le  i f  k c  and ks do not  increase  with  time. 

nY  nY 
R R 

Substituting  equations ( D l )  and (D2) f o r  5, and Cs into  equations  (12) 
and retaining  only  f i rs t -order   terms  in   the  per turbat ions  gives  

and 

cos 2(QT + 'p) e c  = 0 -1 
where A cos(S2-r + 5) i s  presumed to   s a t i s fy   equa t ion  (14) ,  and, for   s implici ty ,  
the  case PC = ps = 0 has  been  considered. (The case of nonzero'damping is  
analyzed i n  ref. 15.) 

- 

Analysis  of  Perturbation  Equations 

It w i l l  be  noted  that  equations ( D 3 )  and ( D 4 )  a re   o rd inary   d i f fe ren t ia l  
equat ions  with  coeff ic ients   that   are   per iodic   in  t i m e .  Such equations arise 
f requent ly   in   s tab i l i ty   ana lyses ;   they  are typ i f i ed  by t h e  Mathieu equation, 

- + ( K  + 1 6 ~  COS 2Z)Y = 0 d2Y 
dZ2 
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which has  been  studied  extensively.  (See refs. 21  and  26.) Its solutions are 
s tab le  (bounded) fo r   pa r t i cu la r  combinations  of K and Q and unstable 
(unbounded) for   o thers .  Thus, associated  with  equation ( D 5 )  are cer ta in   s tab le  
and unstable   regions  in   the KQ-plane. A s  indicated i n  the  following  para- 
graphs, t h e  Mathieu equat ion  resul ts  are useful  in  analyzing  equations ( D 3 )  
and (D4). 

A s  it stands,  equation ( D 3 )  has a -periodic  coefficient  in  every term. In  
simplified  notation, it can  be  written as 

d2k (1 + 1 cos2~)- - c ~ n  s i n  2~ - + + p(sin;j( - 2 cos2X]kc = 0 ( D 6 )  
dT2 dr 

The f i rs t -der ivat ive  term can  be removed by using  the  following  transfor- 
mation of  variables:  

X = (nr + 5) 

”” d - d d X  
dX dT 

d = Q -  
dx 

i 

= u(x) (1 + p c o s 2 ~ )  J 
With these new variables,  equation ( D 6 )  becomes 

+ p (sin2X - 2 c o s 2 ~ )  + p cos 2~ + 

Dividing by (1 + p cos%) and  expanding  equation ( D 8 )  f o r  small values of p 
gives  the approximate  Mathieu  equation 
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The f irst  ins tab i l i ty   reg ion  of equation (Dg) can  be  estimated from the  
known results for  equation (D3). I n  terms of x and R, t he  one-mode response 
i s  unstable  (with  respect  to  perturbations of C c )  within  the  area bounded by 

3€K2 1 -  - +  0 ( € 2 ) < R < l - -  EA + o ( 2 )  
-2 

8 8 

The boundaries of this  region  coincide  with  the  locus of ve r t i ca l   t angen t s   t o  
the  response  curves, where the  jump phenomenon of nonlinear  vibrations  occurs. 

I n  a similar fashion,   the   subst i tut ion X = (527 + 5) transforms equa- 
t i o n  (D4) t o  

-2 
s+ "- 
d2E dx2 i 522 2 ) EA cos 2x s s  = 0 

The first ins tab i l i ty   reg ion  of this   equat ion  def ines   another   area  in  which the  
one-mode response i s  not stable. In  terms of the  amplitude A, i n s t a b i l i t y  of 
the  solut ion  requires   that  

- 

or 

These inequal i t ies  may be  expressed as a r e s t r i c t i o n  on 52, and the solu- 
t i o n  i s  unstable  (with  respect t o   p e r t u r b a t i o n s   i n  C s )  within  the  region 

-2 -2 

8 8 
1 - EA + o ( 2 )  < n < 1 + * + o ( 2 )  

From a physical  standpoint,  the  preceding  conditions  define a " c r i t i c a l  
amplitude" xcr of t h e  single-mode  response. To understand  this   resul t  more 
fu l ly ,   r eca l l   t ha t  CC(7) i s  associated  with cos 9 and t h a t  CS(7) i s  R 
r e l a t e d   t o   s i n  - ny The loading  q(y, t ) was chosen so tha t   the   d r iven  mode R' 
cos - ny receives   exci ta t ion from the  external   force and the  s i n  mode R R 
receives none. This d i f fe rence   in   exc i ta t ion  shows up i n   t h e   d i f f e r e n t i a l  equa- 
t i ons  which govern  and Cs, and a possible   solut ion  to   these  equat ions i s  
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where t h e   s i n  - ny mode does  not  vibrate. A s  pointed  out by the s t a b i l i t y  

analysis,  however, i f  the  driven mode exceeds t h e   c r i t i c a l  amplitude 
R 

then   the  one-mode approximate  solution becomes unstable.  For  amplitudes of 

cos - ny in   excess  of Acr, t he  companion mode w i l l  respond, d e s p i t e   t h e   f a c t  
- 

R 
t h a t  it i s  not   (direct ly)   exci ted by the  forcing  funct ion.  

Discussion of S t a b i l i t y  Boundaries 

The f irst  in s t ab i l i t y   r eg ion  and the  response of t h e  companion mode have 

simple  physical  explanation. The cos - ny and s i n  - ny modes may be  regarded 
R 

as the  only modes of vibrat ion of a two-degree-of-freedom  system,  where both 
modes have the  same natural  frequency. A s  a r e s u l t  of the  nonlinear  terms  in 
the  equations of motion, dynamic coupling  exists between the  modes. When one 

R 

a 

mode cos - ny is  harmonical ly   exci ted  in   the  vicini ty  of i t s  natural  frequency, 

t h e  dynamic coupling  causes  the companion mode t o  respond. (In  the  terminology 
of nonlinear  vibrations,   the companion mode i s  sa id  t o  be  "parametrically 
excited.") Many o ther   v ibra t ion  problems  give r ise  t o  similar coupled-mode 
vibrations;  one  such example i s   t he   non l inea r   s lo sh ing  of l i q u i d   i n   c i r c u l a r  
tanks. 

R 

Up to   t h i s   po in t ,   on ly   t he  f i r s t  (and most important)   ins tabi l i ty   region 
has  been  discussed. The second, th i rd ,  and h igher   ins tab i l i ty   reg ions  of  equa- 
t i ons  ( D 9 )  and (D10) ind ica te   tha t   the   so lu t ion   (eqs .  (18)) becomes uns tab le   in  
narrow areas near R = 1/2, l/3, 1/4, . . . . Additional  calculations are 
required  to  provide  adequate  solutions  in  these  regions; such r e s u l t s  are d is -  
cussed on pages 54 t o  56 in   re fe rence  15 under t h e   t i t l e  "Ultra-Harmonic 
Response." (For  a general   discussion of ultraharmonic  responses,  stability of 
vibrations,  and jump behavior,  see ref .  26- ) 

The r e s u l t s  of t h e   s t a b i l i t y   a n a l y s i s   f o r   t h e  one-mode response are sum- 
marized i n  figure 4, where the   qua l i t a t ive   e f f ec t  of damping i s  indicated by 
the dashed l i n e s .  Damping affecqs  the  s tabi l i ty   boundaries   pr imari ly   near  
R = 1 and f o r  small values of A.  
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CALCULATION OF x, B, i9, AND 
" 

Equations (22) and ( 2 3 )  form a set of f ive  a lgebraic   equat ions  for  A, B, 
0, x, and v. From th_ese-equgtions, It i s  desirable  to  obtain  response  curves 
of the   var ia t ions  of A, B, 0, and with R for  constant  values of PC, 
ps, E, and Gn. These resul ts   are   best   obtained  by  using an ind i rec t  
approach, as is  frequently  the  case  in  nonlinear problems. 

- -  
- 

The technique  used was t o   t r e a t  Gn as an unknown and compute B, Gn, i9, - - 

and for   severa l   va lues  of A at particu2ar  values of s2. This  procedure 
resul ted  in   curves  of Gn plot ted  against  A with s2 as a parameter. Then 
response  curves of t he   va r i a t ion  of x with ll for  constant  values of Gn 
were  obtained-by cross   p lo t t ing .   In  a similar fashion,  curves of p lo t ted  
against  R, i9 plot ted  against  s2, and so  for th ,  were determined. The method 
i s  out l ined  in   the  fol lowing  sect ion.  Note t h a t   i n  this-approach A and R 
are  regarded as being  given,  with By Gn, @, x, and $ t he  unknowns. 

- 

To compute Gn, it was f i r s t  necessary t o  represent   s in  2& cos %, and 
i n  terms of know-n quant i t ies  by manipulating  equations (2312) and (23d). 

For example, when B i s  nonzero, these  equations become 

- -* 4(n2 - 1) 
cos 2A = E- + 

E2 

and 

- 8PSQ 
s i n  2A = - 2-2 

dl A 

respectively.  By us ing   the   ident i ty   s in  2A + cos 2.4 = 1, these  equations com- 
b ine   to   g ive  a quadratic for 3: 

2 -  2 -  

Solving th i s   equa t ion   y ie lds  two roots   for  3. In   the  present  problem, t h e  
relevant  expression i s  
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The other  root is similar i n  form but  has a negative  sign  before  the  radical 
and was consequently  discarded as an  extraneous  root  because it w i l l  not   sa t isfy 
equations  (23) i n   t h e  limit as ps tends t o  zero. 

From t h i s   p o i n t  on, 3 can be regarded as a known quantity,   since  the 
right-hand  side of equation (E3)  i s  expressed  completely i n  terms of the  given 
var iables .  With 3 now completely  determined,  cos  can  be  found  from 
equation ( E l ) .  Similarly,   sin i s  given i n  terms of x, R, E, and ps 
by  equation  (E2). 

From a n   2 e r a t i o n a l   s t a n d p o i n t , i t  i s  now a straightforward problem t o  
compute B, A, Gn, and a. With A, R, E, ps,-and PC given, @ is  
found  from  equation (E3) .  Then s i n  2 and  cos 24 are computed by using 
equations ( E l )  and (E2). These r e su l t s  are a l l  substi tuted  into  equations  (23a) 
and  (23b) which are repeated  here  for  convenience 

- - 

Gn cos 5 = (1 - R 2 ) x  - d ( 2  - B COS 
-2 

4 

and which r e l a t e   t he  unknown quant i t ies  on t h e   l e f t   t o   t h e  known variables on 
the   r i gh t .  The nondimensional  force Gn and t h e  phase @ can then be found 
from tr igonometr ic   ident i t ies ;   that  i s ,  

and 

where Gn cos 5 and Gn s in   a r e  computed from equations  (238) and (23b). 

Similarly, a can be determined as 

A - 1  = - tan- 1 ( s i n  -) 
2 cos 24 

- s ince   s in  and  cos % are  known from equations ( E l )  and (E2).  Finally, 
B and are  easily  obtained,  since 

- p  B =  B 
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and 

where 3, a, and (P are a l l  known from pre ceding  calculations. 

This approach was used to   obtain  curves  of the   var ia t ions  of A with Gn, 
- 

with Gn, and so  fo r th   fo r   pa r t i cu la r   va lues  of Sl. By cross   p lo t t ing   the  
results,  the  response  curves of f igure  5 were obtained. The damping coeffi-  
cients,  ps and PC, and the  nonlinearity  parameter E were held  fixed  during 
the  calculat ions.  The actual  numerical work was done  on an IBM 7090 e lec t ronic  
data  processing  system by using a simple FORTRAN program. 

By using a large  value of ps i n   t he   ca l cu la t ions ,   t he  companion mode was 
suppressed and only  the  driven mode responded.  This  technique  allowed  the same 
program to-be used t o  compute Loth the  one- and two-mode response  curves. 
P lo ts  of (3 against  Sl and $ against  D were a l so  made, but  they  are  not 
presented  here  since  the  phase of the  response i s  of r e l a t ive ly  minor in t e re s t .  
For the  coupled-mode case, however, it-is in t e re s t ing   t o   no te   t ha t  x w a s  
usual ly   c lose  to   zero.  Both @ and $ ranged  from -n t o  -n/2 as the  fre- 
quency ra t io   var ied  from 52 >> 1 down t o  D = 1. Similar   resul ts  were obtained 
f o r   t h e  single-mode response. 
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STABILITY OF THE COUPI;ED-MODE RESPONSE 

A s  i n   t he   i nves t iga t ion  of t h e   s t a b i l i t y  of t h e  single-mode  response 
(appendix D) ,  t h e   s t a b i l i t y  of t he  coupled-mode response  (eqs.  (24)) may be 
examined by disturbing 5 ,  and 5 ,  di rec t ly :  

In   t he   p re sen t  case, however, t h i s  procedure  resul ts   in  two very  complicated 
coupled differential   equations  involving E c  and Es, with  each  term i n   t h e  
equations  having a per iodic   coeff ic ient .  A simpler  analysis (which i s  adequate 
f o r  purposes of t h i s   r e p o r t )  can  be made by t h e  method of averaging. 

Use of the  Method of Averaging 

To apply  the method of averaging t o   t h e   s t a b i l i t y  problem, l e t  

where the  steady-state  solution  has  been  redesignated by 

The var iables  a(T), b(T), cp( T), and 7(7)  represent small per turba t ions   in  
the  amplitudes and  phases of the  steady-state  response.  The solution  (eqs.   (24) 
o r  (F2) ) i s  s a i d   t o  be s tab le  if  a, b, cp, and 7 do  not  increase  with time. 

Substi tuting  the  preceding  expressions  for A, B, 0, and (eqs. Fl)) 
” -  

into  equations (21) and retaining  only  f i rs t -order   terms  in   the  per turbat ions 
gives  coupled  equations of t he  form 
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The index j ranges  from 1 t o  4 and  corresponds t o  each of the  equations  (21a) 
t o  (21d). The c o e f f i c i e n t s   c i j  are independent  of T and  depend upon such 
quant i t ies  as the  original  amplitudes,  phases, and damping. For any s e t  of 
steady-state  values (Eo,  go, R, E, etc . )   the   values  of C i j  are constant, 
and  equation  (F3)  then  represents a system of linear  equations  with  constant 
coeff ic ients .  

Such equations  are readily solved by standard  techniques.  For example, 
when the   subs t i t u t ions  

a ( T )  = ale hr 

b(  T )  = blehr 

a re  made i n  equation  (F3),  an  eigenvalue problem f o r  A resul ts :  

I L - h M ( = O  (F4) 

where L and M are  real, nonsymmetric four-by-four  matrices  involving  the 
constants  cij; a1, bl ,  cpl, and 71  are   a lso  constants .  When equation  (F4) 

i s  multiplied  out, it gives a polynomial which y ie lds  complex roots   h i .  If 
any root  has a pos i t iv   rea lgar t ,   the   per turba t ions   increase   wi th  time and the  
steady-state  solution [Eo, Bo, 52, e tc . )  i s  unstable a t  that   point .  Con- 
versely,   the   vibrat ions  are   s table  if a l l  the   roo t s   h i  have negative  real  
par t s .  

The S t a b i l i t y  Boundaries  and  Their  Interpretation 

For  the  case of no damping (p, = 0, ps = 0), equation (F4) can readi ly  be 

A4 + 2a 2 (a 2 + p2)Az + a'P'(a2 - p*) = o (F5) 

expanded t o  give 

where the   subs t i tu t ions  

A = 2Slh 
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have  been  used for   s implif icat ion.  The roots  of  equation (F?) w i l l  have nega- 
t i v e  real pa r t s  i f  the   inequal i ty  

2.  EA, 
8 

- 2  
1 -  + O ( E 2 )  < n 

i s  sa t i s f i ed .  

On the  other  hand, i n   t h e  absence of damping, equation ( 2 3 ~ )  shows t h a t  
real nonzero  values  of w i l l  ex i s t  only i f  R meets the  condition 

(Note that  this  condition  agrees  with  that   in  the one-mode s t ab i l i t y   ana lys i s .  ) 
(See  appendix D. ) The preceding  inequalit ies combine t o  show tha t   t he  approx- 
imate  solution  (eqs. (24) ) i s  real   valued and s t a b l e   ( i n   t h e  absence  of damping) 
within  the  region 

2. 38€x2 EX2 1 -  8 + O ( E 2 )  < R < 1 + - + O ( E 2 )  
8 

The r e s u l t s  of t he  coupled-mode s t ab i l i t y   ana lys i s   a r e   p re sen ted   i n   f i g -  

ure 7. Real values of  do no t   ex i s t   t o   t he   r i gh t  of t he  curve R = 1 + - 8 ’  
2. 38d2 

and the  two-mode solution is  uns tab le   to   the  l e f t  of the  curve 52 = 1 - 
8 

Damping al ters   these  s tabi l i ty   boundaries ,   pr imari ly   near  R = 1 and f o r  small 
values of x. The e f fec t  of a small amount of damping is  indicated  quali ta- 
t i v e l y   i n   f i g u r e  7 by t h e  dashed l i nes .  

EX2 
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TECHNICAL DETAILS OF EXPERIMENTS 

For reasons of conciseness  and  readability, it was necessary t o  omit  from 
t h e  body of   the  report  many of the  technical .   detai ls   per ta ining  to   the  experi-  
ments. The purpose o f , t h i s  appendix i s  t o   e x p l a i n  some of these  experimental 
i n t r i c a c i e s  which include  the measurement of the  forcing  funct ion and the  anal-  
y s i s  of the  response by  means of  Lissajous  figures. 

Equipment f o r  Measuring Deflections 

Radial motions  of  the  ring were  measured  by two inductance  pickups.  These 
deflection  sensors were mounted on a f ix ture   wi th  a large  bearing which  allowed 
them t o  move circumferentially  around  the  r ing.   (See  f igs.  12  and 1 3 . )  The 
s ignal  from  each  pickup was fed  through a c a r r i e r  

Figure  12.- Overall view of experimental  setup.  L-65-7901  Figure 13.- Closeup of r ing.  L-65-7902 
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amplifier and i n t o  one side of a different ia l   amplif ier ,   the   output  of which 
was in   tu rn   sen t   th rough a band-pass f i l t e r  t o  a cathode-ray  oscilloscope (CRO) .  
(A  block diagram  of t h e  arrangement i s  shown i n   f i g .  8.)  The system was con- 
nected so  that   the   pickups  operated  in  a push-pull  fashion; t h i s  arrangement 
resul ted  in   an  ant isymmetr ic   operat ing  character is t ic ,  shown i n   f i g u r e  14. 

0 

-lor - O 

Actual  size  and  spacing  shown 

- 3 O L  
I/~. I I I 1 I 1 I 

-.I6 -.12 -. 08 -. 04 0 .04 .08 .12 . I6  
Displacement, d, in. 

I- I 1 I I 1 I I 

-.40 -.30 -.20 -. 10 0 .IO .20 .30 .40 
Displacement, d, cm 

Figure 14.- Cal ibrat ion  curve for pickup  system. 

Application and Measurement of  Forcing  Function 

Vibrations  of  the  ring were excited  by means of an  electrodynamic  shaker. 
The shaker was connected to   t he   r i ng  by a fine  tungsten  drive  wire  (0.001-inch 
(0.003-em) diameter),  as shown i n   f i g u r e s  12 and 13. The wire  served as a very 
soft  coupling  spring between the  shaker and the  ring.  Soft  coupling was imper- 
ative,   since  the  spring  acted as a constraint  and ra i sed   the   e f fec t ive   na tura l  
frequency  of  the  ring. 

The shaker  amplitude and frequency were controlled by a standard 
oscillator-amplifier  arrangement. By  recording  the  displacement  of  the  shaker 
and knowing the  spring  constant of the  wire,  it was possible   to  compute the  
force   ac t ing  on the   r ing .  That i s ,  f o r  a shaker  displacement  of 6, cos ut ,  
t h e  amplitude  of the  force  exerted on the   r ing  was 

P = - k6, 1 
2 

where k i s  the  spring  constant of the  dr ive  wire ,  6,  i s  the  amplitude of 
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the  shaker  displacement, and the   fac tor  1/2 a r i s e s  from the  geometry  of the 
drive-wire  arrangement.  Strictly  speaking,  equation (Gl) appl ies   only  for  
static  displacements of the  coupling  spring. However,  when the  fundamental 
resonant  frequency  of  the  coupling  spring i s  much higher  than  the  frequency 

supplied  by  the  shaker,  the  equation P = - k6, becomes a very good approxima- 

t ion .  I n  t h i s  case,   the   iner t ia  of the  coupling  spring can  be  neglected,  and 
the  spring  displacements  are  quasi-static. 

I 
2 

Although other  types of coupling  springs were t r i e d ,  it was found t h a t   t h e  
tungsten  drive wire w a s  the   only one which could  sat isfy  the  confl ic t ing 
requirements  of  soft  ooupling  (i.e., a low value of k )  and high  resonant  fre- 
quency. The wire used i n   t h e  experiments  had a fundamental  frequency  of 
300 cps (300 Hz) and a spring  constant of only 0.035 lb/ in .  (6.12 N/m) . 

Because of i t s  low st i f fness ,   the   dr ive  wire  had on ly  a slight  influence 
on the  natural   f requencies  of the  r ing.  However, i t s  attachment t o   t h e   r i n g  

was such that   the   f requencies  of t he  cos - ny modes were raised  s l ight ly ,  

whereas  those of  the  s in  modes were unaffected.   This  disparity  created an 

overlapping of two ins t ab i l i t y   r eg ions   ( f ig .  15) and led  t o  anomalous r e su l t s .  
To counteract th is  e f f ec t ,  it was necessary t o  add a small  concentrated mass t o  
an  antinode of cos - ny which lowered i t s  natural  frequency and separated  the 

unstable  regions. 

R 

R 

R' 

Adding the  small mass had another   beneficial   effect ,  as it great ly  reduced 
t h e  tendency of t h e  nodes of 

sh i f t i ng  of t h e  nodes  can be 
the  r ing,  as noted by 
Tobias  (ref.  27). The 
added mass was a short 
piece o f  solder which w a s  
glued t o   t h e   r i n g   d i r e c t l y  
alongside  the  drive  wire.  
This  arrangement  fixed  the 
"preferent ia l  modes  of 
t h e  ring. (See r e f .  27.) 

The locat ion of t h e  
mass and the  drive  wire 
may be  thought of as the  
or ig in  of the  circumfer- 
ent ia l   coordinate   y .   In  
t h i s  case,   the  force 
exerted on the   r i ng   ac t s  
a t  y = 0. A s  a conse- 

quence, t h e  cos - ny modes 
were driven by the  forcing R 

COS to   "dr i f t "   c i rcumferent ia l ly .  Such 

explained by considering small imperfections i n  

Y,",YA Driven mode unstable: "jumps" occur 
Companion Inode excited; both modes vibrate 

A \- Overlap  region 

(a) w c  > os. 

Figure 15.- Sh i f t  of instabil ity  regions  due  to  changes in natural  frequency. 

w c  = Linear  frequency of cos?;  driven mode. os = Linear  frequency 

of s i n  R; nY companion mode. 
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funct ion,   but   the   s in  - modes were not; t h a t  is, there  was no generalized ny 
R 

force on t h e   s i n  modes. Note tha t   t he   ana lys i s  

case. 

Actually,  the  loading  used in   the   ana lys i s   (eq .  

q(y, t ) = 5 cos - cos cut nY 
fiR R 

whereas the  experimental  loading was concentrated at 
sented as 

q (y , t )  = 6(y)F COS cut 

In  equation (G2), 6 (y )  i s  the  Dirac  del ta   funct ion 
uni t   l ength   tha t   the   d r ive  wire exer t s  on the  r ing.  

was conducted f o r  a similar 

y = 0 and  can  be  repre- 

arrangement  described  herein, F can  be  calculated from 

and F is  the  load per  
For the  experimental 

P F '6 

where b i s  the  length of the  r ing and P i s  given  by  equation (Gl) . 
This  type of loading  (eq.  (G2)) i s  analyzed in   re fe rence  15. The r e s u l t s  

are very similar t o  those  of  the  present  analysis,  provided  that  the  driving 

frequency (u i s  i n   t h e   v i c i n i t y  of the  natural  frequency of t he  cos - ny mode. 

I n   t h i s  case, the  response of the   r ing  can  be  approximated by using F in   p l ace  
of F, in  equation (13) and other  related  equations.  For example, the  cor- 
responding  nondimensional force Gn becomes 

R 

F P Gn = - - 
nRph2%2 (fiRphb )hWM2 

where equation ( G 3 )  has  been  used. 

A more detailed  explanation of the  experimental  apparatus i s  given i n  ref- 
erence 15; as indicated  therein,  refined  experimental  techniques were used t o  
minimize the  nonlinearit ies  introduced by t h e  measuring  system  and by the  sus- 
pension,  shaker,  and  drive  arrangement. 

Analysis of Response 

Detection of a s ingle  mode.- A s  noted  previously,  the  pickup  system  sensed 
r a d i a l  motions of the   r ing  and converted them i n t o   e l e c t r i c a l   s i g n a l s  which 
were displayed on an  oscilloscope. These s ignals  were in te rpre ted   wi th   the   a id  
of Lissajous figures, as follows: 
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The vol tage   p ropor t iona l   to   the  radial displacement of the   r ing  was fed 
i n t o   t h e   v e r t i c a l   a x i s  of the  oscil loscope,  while  the  horizontal  axis was 
dr iven  by  the  osci l la tor  which controlled  the  shaker.  This  arrangement  resulted 
i n  a Lissajous  f igure which indicated  both  the  amplitude and the  phase  of  the 
v ibra t ion   tha t  was being  sensed  by  the  pickup. By slowly moving the  pickup 
around the  circumference of the   r ing  and noting  the  successive  Lissajous  fig- 
ures ,  it was possible   to   analyze  the motion  of the  r ing.  For example, when the  
response  consisted of primarily the cos 

R 

U 
0) 

z 0 
W 
U 

z 

Figure 16.- Circumferent ia l   var iat ion of Lissajous  f igures. 
Single-mode  response  (resonance). 

mode vibrating  near i t s  resonant 

c 1' 

+ Y  

frequency,  successive 
Lissajous  patterns such a s  
those shown i n  figure 16 
were  observed. The open ver- 
t i ca l   e l l i p ses   i nd ica t ed   t ha t  
t he  major  response was *goo 
out  of  phase  with  the  forcing 
function; measurements showed 
that  the  amplitude of the 

response  varied  as  cos - nY 
R 

around the  circumference. 

A t  the  zeros of cos F, the  

Lissajous  f igures were small 
horizontal   f igure  e ights  
which indicated  vibrat ions 
a t  twice  the  dr iving  f re-  
quency. This  pattern was i n  
agreement  with  the  analyti- 

c a l   r e s u l t s ,  which predicted  the  occurrence  of  this  type of "double-frequency 
contraction. I' 

These observations were in   general  agreement with  the assumed vibration 
mode; namely, 

w(y,t) = &(t)cos  - - - b2(t) ny n2 
R 4R 

where b(t) N cos cut. Subsequent  measurements  around the  circumference of the  
ring  supported  this  conclusion. 

Circumferential  variation  of  response.- The voltage V from the  pickup 
system  can  be  represented a s  a Fourier series i n  time 

V(y,t) = V,(y)cos ut + v2(y)cos a t  + v3(y)cos Wt  + . . . (6) 

with coef f ic ien ts   tha t   vary  around the  circumference  of  the  ring. The coef- 
f i c i e n t s ,  V1(y), V,(y), . . ., conta in   the   spa t ia l   var ia t ion  of the   def lec t ion  
shape, combined with  the  harmonics  introduced  by  the  pickup  system. By passing 
the signal  through a harmonic  analyzer and using a narrow  2-cps (2-Hz) band-pass 
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f i l t e r ,   the   c i rcumferent ia l   var ia t ion  of the f irst ,  second,  and t h i r d  harmonics 
was determined.  This  determination was accomplished  by exci t ing the n = 4 mode 
and recording  the  appropriate  voltages a t  several   posit ions  along a half  wave- 
length.  The results  are  given  in  nondimensional form i n  figure 17. The re la t ive '  
amplitudes  of  the  harmonics were i n   t h e   r a t i o  

'1,max ' ' 2 ,  node ' '3,max as 1 : 0.04 : 0.018 

A s  shown i n   f i g u r e  17, V,(y) was almost a perfect   s ine wave. Similar 
results were obtained  for  other  half  waves of t h e  n = 4 mode and l e d   t o   t h e  

conclusion  that  V1(y) was very  closely  represented by Vi,max cos y. It i s  

bel ieved  that   th is   vol tage  var ia t ion was due e n t i r e l y   t o   t h e  motion of t h e  ring, 
t h a t  is, 

W (  Y , t )  - A COS ut COS - nY 
R 

would g i v e   r i s e   t o   t h e  observed r e su l t s .  

The var ia t ion  of the  other  harmonics was influenced  by  the  nonlinearities 
of t he  pickup  system which made it impossible t o  determine how  much of t h e  
cos at term was caused by ac tua l  motion of the   r ing .  A s  i nd ica t ed   i n   f i g -  
ure 17, however, Vz(y)  did  contain a major component t h a t  was constant   in  
space, as i s  suggested by the  theory.  

The t h i r d  harmonic in   the   s igna l   resu l ted   p r imar i ly  from the  nonl inear i ty  
of the  pickup  system. The data   indicated  that  V3(y) varied as 

s i n  fir, where r i s  the   f rac-  3 
' 3 ,  m a x  
t i o n  of the  half  wavelength. Such 
a r e su l t  can  be  explained by consid- 
ering  the  antisymmetric  operating 
charac te r i s t ic  of t he  pickup  system 
and not ing  that   the  major i n p u t   t o  
t he  system ( i . e . ,   t he   de f l ec t ion  of 
the  r ing)   var ied as s i n  fir along a 
half  wave. The l a t t e r   r e s u l t  was 
confirmed by subsequent mode-shape 
measurements which showed t h a t   t h e  
primary  deflection of the   r ing  was 
independent of the  .vibration ampli- 
tude.  (See  fig. 9 and the  related 
d iscuss ion   in   the  body of t h i s  
report .  ) 

Additional results ( r e f .  15) 
include a p lo t  of the  root-mean- 
square  response  around  the circum- 
ference of the  r ing and measurement 
of the  amplitude of t h e  "double- 
frequency  contraction" at the  nodes 
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F igure 17.- Spatial  variation of response voltage. 
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of cos - ny The conclusion from a l l  these measurements w a s  that   the   experi-  R '  
mental  deflection  could  be  expressed as 

w(y,t) = AE(t)cos - f C,( t )  nY 
R ( G 7 )  

when Lissajous figures of the  type shown in   f i gu re  16 were observed.  Amplitudes 

A E ( t )  and CE( t )  are  the  experimental  time-varying  amplitudes of cos and 

the  uniform  contraction,  respectively. The amplitude AE(t)  was measured a t   t h e  

antinodes  of  cos  whereas  the  contraction ,(t) was measured a t   t h e  nodes. 

R 

R' 

Detection of ~ . two ~~~ coupled modes.- Early  in   the  experimental  program, it was 
not iced-   tha t   in  some cases small changes in   the  dr iving  f requency o caused 
significant  modifications of the  Lissajous  patterns.  This  behavior was t raced 
t o   t h e  appearance of the  companion mode s i n  9, which pa r t i c ipa t ed   i n   t he  

motion  along wi th  the cos - ny mode. 
R 

R 

When coupled  vibrations of this  type  occurred,  successive  Lissajous  pat- 
t e rns  such as   those shown in   f i gu re  18 were obtained. The open v e r t i c a l  

e l l i p s e s  were observed a t  the  antinodes of cos - and indicated  that   the  

response  there w a s  k90° out of phase  with  the  input  force. A t  t he  nodes  of 
COS =, the   Lissajous  f igures  were s t r a igh t   l i nes ,  which i s  charac te r i s t ic  of 

a response  direct ly   in   (or   out   of)  phase  with  the  input. The s t ra ight  l i n e s  
resul ted from t h e   s i n  mode, which has i t s  maximum amplitude a t   t h e  nodes 

of cos F. After  trying  various  combinations of s ines  and cosines, it was 

found that the  observed  Lissajous  figures  correspond t o  a def lect ion of the  
f orm 

nY 
R 

R 

R 

which demonstrates  the  existence of t he  companion mode. 

When the  amplitudes (A and B) and the  phases (QA and %) of t h e  motion 
are  exactly  equal,  a pure  traveling wave r e su l t s .  That is ,  equation ( G 8 )  may 
then  be  wri t ten  in   the form 

Observations  with  the  aid  of a stroboscope  disclosed  the  presence of t rave l ing  
waves when Lissajous  patterns such as those   i n   f i gu re  18 were noted. These 
observations  gave  further  indication  that  the  coupled  vibration  involved  the 
cos - n' mode and i t s  companion mode s i n  - nY 

R R '  
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Figure 18.- Ci rcumferent ia l   var ia t ion of Lissajous  figures.  Coupled-mode 
response  (resonance). 

It was also  noted  that   the  appearance of t h e  companion m o d e  r e su l t ed   i n  a 
reduction of the  second  harmonic content  of  the  response.  This  result i s  i n  
agreement  with the  analysis,  as may be  seen  by  examining  the  contraction term 
(es. ( 9 ) )  

Since An( t ) and B,( t ) are  out of phase by 90' i .e., An - COS ut, 
Bn - s i n  ut ), t he  second  harmonic component of An ( t  ) t ends   to   cance l   tha t  

of  Bn2(t) when t h e  two terms  are  added. 

A s  a r e su l t  of these and other  observations, it was concluded t h a t   t h e  
experimental  deflection  could  be  expressed as 

when Lissajous  f igures of the  type shown i n   f i g u r e  18 were observed. The coef- 
f i c i e n t s  A E ( t )  , %(t) , and $(t) are  the  experimental  time-varying  ampli- 

tudes of cos 3, s in  x, and the  uniform  contraction,  respectively. 
R R 

Once the  various  responses of the  r ing  had  been  identified,  it was pos- 
s ible   to   obtain  response  curves  of t he   va r i a t ions  of AE( t )  and BE( t )  with 
u and t o  compare them wi th   the   ana ly t ica l   resu l t s .  These tests are  described 
i n   t h e  body of the   repor t .  
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Other  Results of In t e re s t  

In  addition  to  the  preceding  results,   several   other  experimental   observa- 
t i o n s  were made. P a r t  of t h i s  work was an  experimental  response  survey,  the 
r e s u l t s  of  which are given i n   t a b l e  I. A s  indicated  therein,   several   u l t ra-  
harmonic  responses'were  noted,  including some which involved  coupling  between 
two modes with  different  mode numbers. Results of th i s   type   a re   p red ic ted  by 
t h e   i n f i n i t e  mode analysis  of reference 15. Additional  experiments  reported  in 
reference 15 include  the  steady-state  response of the  n = 3 mode and some 
transient  responses of the  n  = 4 mode.  The l a t t e r  responses  demonstrate  the 
growth of t he  companion mode with  time when the  dr iven mode exceeds t h e   c r i t i c a l  
amplitude. Damping t r aces  were also  obtained  for   the  n  = 3 and n = 4 modes. 
For  these  and  other  details ,   see  reference 15. 

53 



APPENDIX H 

ANALOG-COMPUTER STUDIES 

The approximate  solutions  obtained  by  the method of  averaging  indicate a 
gap i n   t h e  coupled-mode-response curves.   In   order   to   f ind  out  what happens 
t o   t h e  response  in  the gap region, an analog computer was used to  simulate 
equations  (12) which are  repeated  here  for  convenience. 

Analog-computer solut ions were obtained  for   both  the coupled-mode and 
single-mode  responses. The procedure  used  and  the  results  obtained  are  briefly 
discussed  in  the  following  paragraphs. 

In   s e t t i ng  up the  analog  procedure,  the  parameters PC, Os,  E, and Gn 
were held  constant, and  responses were obtained a t  various  values of 52. The 
procedure  used was t o   s e t  a l l  the   in i t ia l   condi t ions   equal   to   zero   i . e . ,  

C c (  0) = 0, >( 0) = 0, etc.)  and then   tu rn  on the  forcing  function a t  a par- 

t i c u l a r  frequency 52. The driven mode would respond t o  the  exci ta t ion,  and 
usually it would reach  a  steady  state,  whether  or  not  the companion mode 
a l so  responded. Once steady-state  conditions were a t t a i n e d ,   t h e   s t a b i l i t y  of 
the  response was examined by in ten t iona l ly  "bumping" o r  dis turbing C c  and C S  
e l e c t r i c a l l y .  When the  companion mode d i d  not  respond,  disturbances t o  (, 
were  found t o  damp out,  as would be  expected.  Responses were obtained  for 
two d is t inc t   cases  which d i f f e r  i n  t he  amount of damping i n   t h e  companion 
mode. 

i 
d( 
dT 

Case 1: couypled-mode __i -T response.-   In  the  case of t h e  coupled-mode response, 
the  parameters  used were 

PC = Ps = 0.002 (equal damping i n  both modes) 

E = 4.2 x (nonl inear i ty)  

Gn = 0.1 ( force)  

These values   are   the same as those  used to   ca l cu la t e   t he  coupled-mode response 
by the  method of averaging. A s  shown i n   f i g u r e  5 ,  the  analog  results  agreed 
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very  well   with  the  analytical   solutions.   In  the  gap  region,  the  analog  traces 
indicated  nonsteady  vibrations  with  beats. It was impossible to  obtain  steady- 
state  responses  within  the gap,  even  though the  problem was run  for  several  
hundred  cycles. 

Case 2: single-mode  response.- In   the   case  of t h e  single-mode  response, 
the  companion mode w a s  heavily damped t o  prevent i t s  vibrat ion.  The parameters 
used were the  same as the  preceding  case  except  for ps which was pS = 0.05 

(companion mode  damped heavi ly   re la t ive   to   the   d r iven  mode). The analog  results 
ver i f ied  the  analyt ical   solut ion  for   this   case,   as  shown i n  f igure  2. 
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TABLE I.- EXPERIMENTAL  RESPONSE SURVEY 

Mode 
vibrat ing 

n = 2  
n = 3  
n = 4  
n = 5  
n = 6  
n = 7  
n = 8  
n = 9  
n = 10 
n = 3  
n = 4  
n = 7  
n = 8  
n = 8  
n = 9  

n = 5  

n = 6  

n = 8  

n = 9  

Driving 
frequency, 

cps o r  Hz 

7.1 
17- 5 
33 -0 
53 -2 
78 .o 

107.4 
139 - 2  
179.6 
222.8 

8.0 
11.1 

213.0 
69.8 
47.6 
92.3 

26.7 

39- 0 

35 *8 

35.3 

60.5 

Type of response 

Resonance a t   d r iv ing  
frequency 

Ultraharmonic;  order  1/2 
Ultraharmonic;  order 1/3 
Subharmonic; order 2 
Ultraharmonic;  order 1/2 
Ultraharmonic;  order l /3  
Ultraharmonic;  order  1/2 
n = 3 at  26.7  cps (Hz) 
n = 5 a t  53.4 cps (Hz) 
n = 4 a t  39.0  cps (Hz) { n = 6 a t  78.0  cps (Hz) 
n = 4 a t  35.8 cps (Hz) { n = 7 a t  107.4  cps (Hz) 

n = 4 at 35.3 cps (Hz) { n = 8 at  141.2 cps (Hz) 
n = 5 at 60.5 cps (Hz) 
n = 9 at 181.5 cps (Hz) 

NASA-Langley, 1965 L-4216 
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